References

Bharadwaj, P. K., Schugar, H. J. \& Potenza, J. A. (1991). Acta Cryst. C47, 754-757.
Bremer, J., Uhlenbrock, S., Pinkerton, A. A. \& Krebs, B. (1993). Z. Anorg. Allg. Chem. 619, 1183-1195.
Dubler, E., Hanggi, G. \& Schmalle, H. (1992). Inorg. Chem. 31, 37283736.

Fan, H.-F. (1991). SAPI91. Structure Analysis Program with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Khan, M. A. \& Tuck, D. G. (1984). Acta Cryst. C40, 60-62.
Lundberg, B. K. S. (1966). Acta Cryst. 21, 901-909.
Molecular Structure Corporation. (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation. (1994). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Parvez, M. (1996). Acta Cryst. C52, (CIF reference: fg 1128).
Parvez, M. \& Rusiewicz, M. (1995). Acta Cryst. C51, 2277-2279.
Parvez, M. \& Sabir, A. P. (1996). Acta Cryst. C52, 1572-1574.

Acta Cryst. (1996). C52, 1653-1655

(Dicyanamido)bis(1,10-phenanthroline)copper(II) Tricyanomethanide

Ivan Potočñák, ${ }^{a}$ Michal Dunaj-Jurčo, ${ }^{a}$ Dušan Mikloša and Lothar JäGer ${ }^{b}$
${ }^{a}$ Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia, and ${ }^{b}$ Institute of Inorganic Chemistry, Martin-Luther-University, Halle-Wittenberg, Weinbergweg 16, 06120 Halle/Saale, Germany. E-mail: potocnak@cvtstu.cvt.stuba.sk

(Received 29 November 1995; accepted 29 February 1996)

Abstract

The crystal structure of $\left[\mathrm{Cu}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right]$ $\left[\mathrm{C}(\mathrm{CN})_{3}\right]$ is formed by discrete $\left[\mathrm{Cu}(\text { phen })_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right]^{+}$ cations and $\left[\mathrm{C}(\mathrm{CN})_{3}\right]^{-}$anions (phen $=1,10$-phenanthroline). The coordination polyhedron of $\mathrm{Cu}^{I I}$ is a distorted trigonal bipyramid with a CuN_{5} chromophore.

Comment

Crystal structures of five-coordinate copper compounds with the general formula $\left[\mathrm{Cu}(\mathrm{phen})_{2} \mathrm{X}_{2}\right]$, where $X=\mathrm{NCS}$ and NCSe, are known (Sedov, Kabešová, Dunaj-Jurčo, Gažo \& Garaj, 1982). The pseudo-halide ligands are in a cis configuration in an equatorial plane and the
two phen molecules occupy both equatorial and axial positions. Recently, we have published the structure of a complex with the same general formula, with $X=$ $\mathrm{N}(\mathrm{CN})_{2}$. The two dicyanamide ligands are also in a cis configuration but one occupies the axial while the second one the equatorial plane. One phen molecule occupies both the equatorial and the axial position, as in the previous cases, but the second phen molecule is coordinated only in the equatorial plane (Potočňák, Dunaj-Jurčo, Mikloš, Kabešová \& Jäger, 1995). We have also published structures of two five-coordinate $\left[\mathrm{Cu}(\text { phen })_{2} X\right]\left[\mathrm{C}(\mathrm{CN})_{3}\right] \cdot n \mathrm{H}_{2} \mathrm{O}$ complexes, with $X=\mathrm{NCS}$, $n=0$ and $X=\mathrm{CN}, n=2$ (Potočňák, Dunaj-Jurčo, Mikloš \& Jäger, 1996a,b). The phenanthroline molecules occupy both the equatorial and the axial positions, as in the six-coordinate compounds with $X=$ NCS and NCSe. We decided to prepare a five-coordinate compound with $X=\mathrm{N}(\mathrm{CN})_{2}$ to find out whether the coordination polyhedron around the Cu^{11} atom will be of the same type as in previous five-coordinate complexes or whether dicyanamide will induce differences in the coordination polyhedron similar to those of the six-coordinate complex [Cu(phen $\left.)_{2}\left\{\mathrm{~N}(\mathrm{CN})_{22}\right\}\right]$.

Fig. 1 shows the labelling scheme of one formula unit. The Cu atom is fivefold coordinated by two phen molecules and by one $\mathrm{N}(\mathrm{CN})_{2}^{-}$ligand (in the equatorial plane). The coordination polyhedron is a distorted trigonal bipyramid. The tcm^{-}anion $\left\{\left[\mathrm{C}(\mathrm{CN})_{3}\right]^{-}\right\}$does not enter the inner coordination sphere. In the trigonal bipyramid the two out-of-plane $\mathrm{Cu}-\mathrm{N} 11$ and $\mathrm{Cu}-\mathrm{N} 31$ distances are practically of the same length [1.977(4) and 1.981 (3) \AA, respectively] and are almost collinear $\left[\mathrm{N} 11-\mathrm{Cu}-\mathrm{N} 31=175.12(14)^{\circ}\right]$. The two in-plane distances $(\mathrm{Cu}-\mathrm{N} 21$ and $\mathrm{Cu}-\mathrm{N} 41)$ also have similar values [2.064 (3) and 2.112 (4) A., respectively], but they are longer on average than the out-of-plane $\mathrm{Cu}-\mathrm{N}$ distances by $0.109 \AA$. The third in-plane $\mathrm{Cu}-\mathrm{N} 2$ distance of 1.982 (4) \AA is significantly shorter than the other two. The out-of-plane angles lie within the range 80.7-95.2 ${ }^{\circ}$. The same features of the coordination polyhedron as well as similar values of the appropriate bond distances and angles were observed in the structures of both above five-coordinate Cu complexes with the same tcm^{-}counteranion.

Fig. 1. ORTEP (Johnson, 1965) drawing of the formula unit and labelling of atoms. Displacement ellipsoids are plotted at the 40% probability level.

The bond angles in the equatorial plane differ considerably from the ideal trigonal angle of 120°, with one large angle of $133.6(2)^{\circ}\left(\alpha_{1}=\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 21\right)$ and two small angles of 115.7 (2) $\left(\alpha_{2}=\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 41\right)$ and $110.70(13)^{\circ}\left(\alpha_{3}=\mathrm{N} 21-\mathrm{Cu}-\mathrm{N} 41\right)$. Thus, the $\mathrm{Cu}-\mathrm{N} 2$ bond is shortened relative to that of a regular trigonalbipyramidal CuN_{5} chromophore. The angle α_{3}, which is opposite to the $\mathrm{Cu}-\mathrm{N} 2$ bond, is narrower than the ideal angle of 120° by 9.3°, and there is a difference of 17.9° between α_{1} and α_{2}. According to the criteria of Harrison \& Hathaway (1980), the coordination polyhedron around the Cu atom can be best described as trigonal bipyramidal with near $C_{2 v}$ symmetry. According to the values of the angles α_{1}, α_{2} and α_{3} for the NCS and CN compounds [126.62(14), 113.19 (13) and $120.16(12)^{\circ}$ and $131.86(14), 124.80(14)$ and $103.34(11)^{\circ}$, respectively], the coordination polyhedra of these complexes can also be best described as trigonal bipyramidal with near $C_{2 v}$ symmetry. The sum of the bond angles in the equatorial plane of the title compound (360.0°) indicates coplanarity of the Cu atom with the three equatorial atoms [the deviation of the Cu atom from the $\mathrm{N} 2-\mathrm{N} 21-$ N 41 plane is 0.010 (3) \AA towards N11].

Owing to steric forces in the trigonal-bipyramidal polyhedron, the N atoms of the two phen molecules are coordinated both in equatorial and axial positions. The $\mathrm{C}-\mathrm{C}$ bond distances and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the phen molecules are quite normal and range from 1.332 (7) to 1.427 (7) \AA and 115.6 (5) to $125.8(5)^{\circ}$, respectively. Both phen molecules are almost planar; the largest deviation of atoms from the mean planes is less than 0.035 (6) A. The mean planes of the two phen molecules are inclined at $112.91(7)^{\circ}$.

There are three canonical formulae describing the mode of bonding in the dicyanamide ligand. Inspec-
tion of the bond lengths (Table 2) shows that no canonical formula properly describes the bonding mode in the dicyanamide. Both the $\mathrm{N}_{\text {cyano }} \equiv \mathrm{C}$ distances [N 2 $\mathrm{C} 2=1.126$ (6) and $\mathrm{N} 3-\mathrm{C} 3=1.123(6) \AA$ and the $\mathrm{N}_{\text {amide }}=\mathrm{C}$ distances [$\mathrm{N} 1-\mathrm{C} 2=1.282(7)$ and $\mathrm{N} 1-$ $\mathrm{C} 3=1.282(6) \AA$] are usual for $\mathrm{N} \equiv \mathrm{C}$ triple $(1.153 \AA$) and $\mathrm{N}=\mathrm{C}$ double bonds ($1.270 \AA$), respectively. The angles $\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$ and $\mathrm{N} 1-\mathrm{C} 3-\mathrm{N} 3[172.8$ (5) and $172.6(5)^{\circ}$, respectively] are almost linear while the value of the $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$ angle is $128.2(4)^{\circ}$. The dicyanamide ligand is perfectly planar, the largest deviation of atoms from the mean plane being 0.003 (6) \AA. According to Golub, Köhler \& Skopenko (1986), the bonding mode of the dicyanamide to the Cu atom can be considered as angular [$\left.\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cu}=159.0(4)^{\circ}\right]$.

The almost planar tcm^{-}anion [the largest deviation of atoms from the mean plane being $0.015(5) \AA$ I A uncoordinated, probably due to steric repulsion, and serves as a counterion to the $\left[\mathrm{Cu}(\mathrm{phen})_{2}\left\{\mathrm{~N}(\mathrm{CN})_{2}\right\}\right]^{+}$ cation. The mode of bonding in this anion can be described as a largely delocalized π-bonding system (Golub et al., 1986). According to this assumption, the lengths of the $\mathrm{C} 4-\mathrm{C} X(X=5,6,7)$ bonds [1.374(7), 1.395 (7) and 1.394 (8) \AA, respectively] are considerably shorter than single $\mathrm{C}_{s p}:-\mathrm{C}_{s p}$ bond lengths ($1.440 \AA$). However, contrary to this assumption, the $\mathrm{C} X \equiv \mathrm{~N} X(X=$ $5,6,7$) bond lengths [1.135 (7), 1.132 (6) and 1.123 (6) \AA, respectively] are slightly shorter than normal $\mathrm{C} \equiv \mathrm{N}$ triple bond lengths ($1.153 \AA$). The angles around the central C4 atom are close to the ideal value of 120°, while the $\mathrm{C} 4-\mathrm{C} X \equiv \mathrm{~N} X(X=5,6,7)$ angles are almost linear.

Experimental

Crystals were prepared by mixing 1 ml of a $1 M$ water solution of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ with 20 ml of a 0.1 M methanol solution of phen. A mixture of 10 ml of a 0.2 M water solution of $\mathrm{KC}(\mathrm{CN})_{3}$ and 10 ml of a $0.2 M$ water solution of $\mathrm{KN}(\mathrm{CN})_{2}$ was added. Dark green needles of the title complex appeared the following day.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)_{2}\right]-$
$\left(\mathrm{C}_{4} \mathrm{~N}_{3}\right)$
$M_{r}=580.07$
Monoclinic
$P 2_{1} / n$
$a=10.080(7) \AA$
$b=12.972$ (7) \AA
$c=19.874$ (13) \AA
$\beta=100.22(6)^{\circ}$
$V=2557.4(28) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.506 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.46(1) \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation in a mixture of $\mathrm{CCl}_{4}-\mathrm{CHBr}_{3}$ and benzene

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 19 reflections
$\theta=3.82-11.66^{\circ}$
$\mu=0.896 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.7 \times 0.35 \times 0.15 \mathrm{~mm}$
Dark green

Data collection
Syntex $P 2_{1}$ diffractometer
$\theta-2 \theta$ scans
Absorption correction:
none
4505 measured reflections
4242 independent reflections
2477 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.0311$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0487$
$w R\left(F^{2}\right)=0.1284$
$S=1.022$
4176 reflections
434 parameters
All H-atom parameters refined

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0646 P)^{2}\right. \\
&+0.6875 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
\end{aligned}
$$

$$
\begin{aligned}
& (\Delta / \sigma)_{\max }=0.006 \\
& \Delta \rho_{\max }=0.444 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.474 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cu	0.22641 (5)	0.27679 (4)	0.92376 (3)	0.0487 (2)
N2	0.1063 (4)	0.1559 (3)	0.9241 (2)	0.0659 (11)
C2	0.0718 (4)	0.0732 (5)	0.9196 (2)	0.0634 (13)
NI	0.0462 (5)	-0.0236 (4)	0.9197 (3)	0.113 (2)
N3	-0.1464 (5)	-0.1214 (3)	0.8669 (2)	0.0752 (12)
C3	-0.0598 (5)	-0.0708 (4)	0.8899 (2)	0.0562 (12)
N11	0.0831 (3)	0.3628 (3)	0.8706 (2)	0.0544 (9)
N21	0.2555 (3)	0.4103 (3)	0.9809 (2)	0.0488 (9)
N31	0.3794 (3)	0.2014 (2)	0.9785 (2)	0.0453 (8)
N41	0.3573 (3)	0.2718 (3)	0.8518 (2)	0.0471 (8)
Cl 1	0.0716 (4)	0.4581 (3)	0.8964 (2)	0.0458 (10)
C12	-0.0018 (5)	0.3364 (5)	0.8145 (3)	0.075 (2)
C13	-0.1003 (5)	0.4026 (6)	0.7818 (3)	0.082 (2)
C14	-0.1118 (5)	0.4966 (5)	0.8082 (3)	0.074 (2)
C15	-0.0251 (4)	0.5281 (4)	0.8676 (2)	0.0590 (12)
C16	-0.0308(6)	0.6253 (4)	0.9005 (3)	0.075 (2)
C21	0.1644 (4)	0.4833 (3)	0.9571 (2)	0.0470 (10)
C22	0.3465 (5)	0.4336 (4)	1.0360 (2)	0.0626 (13)
C23	0.3468 (7)	0.5266 (5)	1.0695 (3)	0.080 (2)
C24	0.2518 (7)	0.5966 (5)	1.0464 (3)	0.077 (2)
C25	0.1563 (5)	0.5785 (3)	0.9880 (2)	0.0595 (12)
C26	0.0553 (6)	0.6486 (4)	0.9577 (3)	0.077 (2)
C31	0.4841 (4)	0.1854 (3)	0.9464 (2)	0.0423 (10)
C32	0.3866 (5)	0.1651 (4)	1.0410 (2)	0.0548 (12)
C33	0.4968 (5)	0.1136 (4)	1.0755 (3)	0.0602 (13)
C.34	0.6034 (5)	0.0985 (4)	1.0441 (3)	0.0609 (13)
C35	0.5996 (4)	0.1332 (3)	0.9773 (2)	0.0503 (10)
C36	0.7041 (5)	0.1175 (4)	0.9389 (3)	0.0627 (13)
C41	0.4726 (4)	0.2221 (3)	0.8783 (2)	0.0431 (9)
C42	0.3449 (6)	0.3051 (4)	0.7884 (3)	0.0612 (14)
C43	0.4451 (6)	0.2938 (4)	0.7494 (3)	0.0710 (15)
C44	0.5597 (6)	0.2449 (4)	0.7759 (3)	0.0658 (14)
C45	0.5767 (4)	0.2052 (3)	0.8424 (2)	0.0507 (11)
C46	0.6926 (5)	0.1507 (4)	0.8747 (3)	0.0639 (14)
C4	-0.1316 (5)	0.9089 (4)	0.2813 (2)	0.0620 (12)
C5	-0.1507 (5)	0.8687 (5)	0.3429 (3)	0.0745 (15)
N5	-0.1617 (5)	0.8347 (5)	0.3942 (3)	0.123 (2)
C6	-0.2402 (5)	0.9513 (4)	0.2366 (3)	0.0673 (13)
N6	-0.3286 (5)	0.9857 (4)	0.2005 (3)	0.103 (2)
C7	-0.0028 (6)	0.9029 (4)	0.2651 (3)	0.075 (2)
N7	0.1009 (5)	0.8970 (5)	0.2521 (3)	0.117 (2)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cu}-\mathrm{N} 11$	$1.977(4)$	$\mathrm{N} 3-\mathrm{C} 3$	$1.123(6)$
$\mathrm{Cu}-\mathrm{N} 31$	$1.981(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.374(7)$
$\mathrm{Cu}-\mathrm{N} 2$	$1.982(4)$	$\mathrm{C} 4-\mathrm{C} 6$	$1.395(7)$
$\mathrm{Cu}-\mathrm{N} 21$	$2.064(3)$	$\mathrm{C} 4-\mathrm{C} 7$	$1.394(8)$
$\mathrm{Cu}-\mathrm{N} 4$	$2.112(4)$	$\mathrm{C} 1-\mathrm{N} 5$	$1.135(7)$
$\mathrm{N} 2-\mathrm{C} 2$	$1.126(6)$	$\mathrm{C} 6-\mathrm{N} 6$	$1.132(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.282(7)$	$\mathrm{C} 7-\mathrm{N} 7$	$1.123(6)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.282(6)$		
$\mathrm{N} 11-\mathrm{Cu}-\mathrm{N} 31$	$175.12(14)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cu}$	$159.0(4)$
$\mathrm{N} 11-\mathrm{Cu}-\mathrm{N} 2$	$93.4(2)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{N} 1$	$172.8(5)$
$\mathrm{N} 31-\mathrm{Cu} 2 \mathrm{~N} 2$	$91.4(2)$	$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	$128.2(4)$
$\mathrm{N} 11-\mathrm{Cu} 2 \mathrm{~N} 21$	$80.79(15)$	$\mathrm{N} 3-\mathrm{C} 3-\mathrm{N} 1$	$172.6(5)$
$\mathrm{N} 31-\mathrm{Cu}-\mathrm{N} 21$	$95.22(14)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7$	$117.9(5)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 21$	$133.6(2)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 6$	$119.9(5)$
$\mathrm{N} 11-\mathrm{Cu}-\mathrm{N} 41$	$98.04(14)$	$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 6$	$122.1(5)$
$\mathrm{N} 31-\mathrm{Cu}-\mathrm{N} 41$	$80.69(14)$	$\mathrm{N} 5-\mathrm{C} 5-\mathrm{C} 4$	$177.6(6)$
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{N} 41$	$115.7(2)$	$\mathrm{N} 6-\mathrm{C} 6-\mathrm{C} 4$	$179.7(5)$
$\mathrm{N} 21-\mathrm{Cu}-\mathrm{N} 41$	$110.70(13)$	$\mathrm{N} 7-\mathrm{C} 7-\mathrm{C} 4$	$179.2(7)$

Intensities were corrected for Lorentz and polarization factors using XP21 (Pavelčík, 1993). The structure was solved by direct methods with SHELXS86 (Sheldrick, 1985) and subsequent Fourier syntheses using SHELXL93 (Sheldrick, 1993). Anisotropic displacement parameters were refined for all non-H atoms. All H atoms were located from the difference Fourier map and refined with free isotropic displacement parameters. Geometrical analysis was performed using PARST (Nardelli, 1983) and SHELXL93. ORTEP (Johnson, 1965) was employed to draw the structure.

This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the Ministry of Education, Slovak Republic (grant No. 1/1412/94).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: KA1175). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Golub, A. M., Köhler, H. \& Skopenko, V. V. (1986). Chemistry of Pseudohalogenides. Amsterdam: Elsevier.
Harrison, W. D. \& Hathaway, B. J. (1980). Acta Cryst. B36, 10691074.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Pavelčík, F. (1993). XP21. Pharmaceutical Faculty, Comenius University, Bratislava, Slovakia.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996a). Acta Cryst. C52, 532-535.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D. \& Jäger, L. (1996b). Acta Cnst. C52, 48-50.
Potočňák, I., Dunaj-Jurčo, M., Mikloš, D., Kabešová, M. \& Jäger, L. (1995). Acta Cryst. C51, 600-602.

Sedov, A., Kabešová, M., Dunaj-Jurčo, M., Gažo, J. \& Garaj, J. (1982). Koord. Khim. 8, 1062-1070.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

